Concerning consequences of blocking Notch signaling in satellite muscle stem cells

نویسندگان

  • Hatem O. Kaseb
  • Susanne M. Gollin
چکیده

Stem cell (SC) research holds the promise of controlling and/or curing a variety of diseases. SC applications include cell therapy, disease modeling, and developmental biology. This commentary focuses on an important study that examined Notch signaling in murine satellite muscle SCs (Lin et al., 2013). The results highlight the possible serious side effects of NOTCH inhibitors, a class of targeted drugs that are being examined for treating a variety of cancers (Krop et al., 2012). Skeletal muscles, unlikemany other tissues, possess a unique regenerative capacity (Shi and Garry, 2006). Many researchers believe that this unique feature may be the key to treating myopathies, other degenerative diseases, and cancer (Jackson et al., 2010). Much of the regenerative potential of muscle depends on a population of SCs called satellite cells (Le Grand and Rudnicki, 2007). The maintenance of stemness in adult SC is regulated by two main factors: the “SC niche” and the stemness regulatory pathways. Stemness regulatory pathways

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch signaling genes

Notch intercellular signaling is essential to cell fate decisions during differentiation, especially in stem cells and progenitor cells. It is also involved in controlling proliferation, survival, and homeostasis in many cell types. Notch signaling genes are targets for pathogenic mutations, including those associated with cancer. In the skeletal muscle lineage, Notch signaling is implicated in...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation.

The bone morphogenetic protein (BMP) and Notch signaling pathways are crucial for cellular differentiation. In many cases, the two pathways act similarly; for example, to inhibit myogenic differentiation. It is not known whether this inhibition is caused by distinct mechanisms or by an interplay between Notch and BMP signaling. Here we demonstrate that functional Notch signaling is required for...

متن کامل

Notch signaling deficiency underlies age-dependent depletion of satellite cells in muscular dystrophy

Duchenne muscular dystrophy (DMD) is a devastating disease characterized by muscle wasting, loss of mobility and death in early adulthood. Satellite cells are muscle-resident stem cells responsible for the repair and regeneration of damaged muscles. One pathological feature of DMD is the progressive depletion of satellite cells, leading to the failure of muscle repair. Here, we attempted to exp...

متن کامل

Treadmill running induces satellite cell activation in diabetic mice

Skeletal muscle-derived stem cells, termed as satellite cells, play essential roles in regeneration after muscle injury in adult skeletal muscle. Diabetes mellitus (DM), one of the most common metabolic diseases, causes impairments of satellite cell function. However, the studies of the countermeasures for the DM-induced dysfunction of satellite cells have been poor. Here, we investigated the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015